

1

PSO Input for Oklahoma Nuclear Power Plant Interim Study

October 4th, 2023

Potential Study Activities

- 1. High level overview of advanced nuclear reactors
 - a. benefits (clean, reliable, energy & capacity, ancillary services)
 - b. costs
 - c. schedule
 - d. other benefits that may be gained by coordinating with other advanced, clean energy technologies such as hydrogen, direct air capture of carbon dioxide, and energy storage
- 2. High level siting study based on EPRI Nuclear siting guide
 - a. ID Region of interest
 - i. Region or State?
 - ii. w/in certain utilities service territory?
 - iii. w/ in XX miles of existing fossil units or owned assets?
 - iv. w/ in XX miles of high voltage transmission lines?
 - b. Screen Candidate Areas
 - i. Proximity to high voltage transmission lines/substations
 - ii. Water supply access
 - iii. Environmental considerations (flood plains, wetlands, scenic rivers, critical habitats, etc...)
 - iv. Proximity to sensitive populations (hospitals, schools, etc..)
 - v. Proximity to major populations
 - vi. Proximity to major transportation (rivers, barge access, rail access, roads)
 - vii. Geologic conditions (faults, mines, karsts, fracking)

Potential Study Activities

- 3. Identify ways for the State of Oklahoma to incentivize SMR development such as:
 - a. Inclusion of nuclear power as a resource option in a State clean energy plan
 - b. Join NARUC-NASEO Advanced Nuclear State Collaborative
 - c. Mitigate financial risks through mechanisms like:
 - i. State grants (i.e. Virginia H.B. 2386 (https://lis.virginia.gov/cgi-bin/legp604.exe?231+sum+HB2386)
 - ii. Annual cost recovery mechanism
 - iii. Regulatory mechanism for early work, i.e. Early Site Permit, Engineering, and NRC licensing (i.e. NCUC DOCKET NO. E-100, SUB 179; item 43; https://starw1.ncuc.gov/NCUC/ViewFile.aspx?ld=7b947adf-b340-4c20-9368-9780dd88107a)
 - iv. Other ideas available at: State Legislation & Regulations Supporting Nuclear Energy NEI Compendium January 2023.pdf
- 4. Address socioeconomic challenges and opportunities, such as:
 - a. workforce education, training, and development
 - b. local and state tax base
 - c. supply chain development and secondary benefits
 - d. permanent and temporary job creation
 - e. First of a Kind (FOAK) and Fast Follower Inflation Reduction Act benefits
 - f. additional economic development opportunities (attracting other businesses looking for clean & reliable power)
- 5. Example studies:
 - a. https://www.michigan.gov/mpsc/commission/workgroups/nuclear-feasibility-study
 - b. https://www.purdue.edu/administrative-operations/nuclear/documents/smr-feasibility-study-interim-report.pdf
 - c. https://inldigitallibrary.inl.gov/sites/sti/sti/5581208.pdf

Appendix

What is a Small Modular Reactor (SMR)

- Small power capacity up to 300 MW(e) per unit, 1/3 size of traditional nuclear reactors
- **Modular –** unit components are factory-manufactured, transported and assembled on site
- Reactors harnessing nuclear fission to generate heat to produce energy
- **Safe –** design allows safe shut down without human intervention
- **Cost Savings** modularization cost reduction for Nth of a kind (NOAK) vs traditional nuclear
- Federal IIJA and IRA quicken research, development, and deployment of emerging tech
- Dozens of designs proposed, two categories: water cooled or non-water cooled

EPRI Siting Guide Overview

EPRI nuclear siting guide incorporates lessons learned over the years and includes SMR considerations

Energy Community Bonus

